главная   оптика   волоконная оптика   спектроскопия   лазеры   лазерные системы
 
     
 
Оптика
Волоконная оптика /
  Распространение света в оптоволокне
  Изготовление и структура оптоволокна
  Волоконные лазеры и усилители
  Приборы и устройства на основе оптоволокна
  Волоконно-оптические датчики
  Волоконные брэгговские решетки
  Оптоволоконная связь
  Комплектующие и оборудование для работы с оптоволокном
Спектроскопия
Лазеры
Лазерные системы
Телекоммуникации и связь
 
Выставки и конференции
Новости науки и лазерной техники
 
О проекте
Ссылки

 

Волоконно-оптические датчики

Перевод Ростислава Ливенцова

Волоконно-оптические датчики (так же часто именующиеся оптические волоконные датчики) это оптоволоконные устройства для детектирования некоторых величин, обычно температуры или механического напряжения, но иногда так же смещения, вибраций, давления, ускорения, вращения (измеряется с помощью оптических гироскопов на основе эффекте Саньяка), и концентрации химических веществ. Общий принцип таких устройств в том, что свет от лазера (чаще всего одномодового волоконного лазера) или суперлюминесцентного оптического источника передается через оптическое волокно, испытывая слабое изменение своих параметров в волокне или в одной или нескольких брэгговских решетках, и затем достигает схемы детектирования, которая оценивает эти изменения.
         В сравнении с другими типами датчиков, волокно-оптические датчики обладают следующими преимуществами:
·       Они состоят из электрически непроводящих материалов (не требуют электрических кабелей), что позволяет использовать их, например, в местах с высоким напряжением.
·       Их можно безопасно использовать во взрывоопасной среде, потому, что нет риска возникновения электрической искры, даже в случае поломки.
·       Они не подвержены электромагнитным помехам (EMI), даже вблизи разряда молнии, и сами по себе не электризуют другие устройства.
·       Их материалы могут быть химически инертны, то есть не загрязняют окружающую среду, и не подвержены коррозии.
·       Они имеют очень широкий диапазон рабочих температур (гораздо больше, чем у электронных устройств).
·       Они имеют возможность мультиплексирования; несколько датчиков в одиночной волоконной линии может быть интегрировано с одним оптическим источником (см. ниже).
Сенсоры на основе брэгговских решеток
Волоконно-оптические датчики зачастую основаны на волоконных брэгговских решетках. Основной принцип многих волоконно-оптических датчиков в том, что брэгговская длина волны (т.е. длина волны максимального отражения) в решетке зависит не только от периода брэгговской решетки, но также от температуры и механических напряжений. Для кварцевых волокон изменение брэгговской длины волны на единицу деформации примерно на 20% меньше, чем растяжение, так как есть влияние деформации на уменьшение показателя преломления. Температурные эффекты близки к ожидаемым только при тепловом расширении. Температурные и деформационные эффекты могут различаться при использовании различных технических средств (например, при использовании эталонной решетки, которая не подвержена деформации, или применении различных типов волоконных решеток) так, что оба значения регистрируются одновременно. Для регистрирования только деформации, разрешающая способность достигает нескольких µε (т.е. относительное изменение длин порядка) при этом точность имеет тот же порядок малости. Для динамических измерений (например, акустический явлений), достигается чувствительность большая чем 1 με в 1 Hz полосы пропускания.
Распределенное зондирование
Другие оптоволоконные датчики не используют волоконные брэгговские решетки как сенсоры, используя в качестве сенсоров само волокно. Принцип зондирования в них основан на эффекте Рэлеевского рассеяния, Рамановского рассеяния или рассеяния Бриллюэна. Например, метод оптической рефлектометрии временной области, где положение области со слабым отражением может быть определено с использованием импульсного зондирующего сигнала. Этот метод используется также для определения других величин, например температуры или напряжения в зависимости от сдвига частоты Бриллюэна.
В некоторых случаях, измеряемая величина является средним значением по всей длине волокна. Этот метод характерен для некоторых температурных датчиков, а также для интерферометров, основанных на эффекте Саньяка, применяемых в качестве гироскопов. В других случаях измеряются позиционно-зависимые величины (например, температура или напряжение). Это называется распределенным зондированием.
Квази-распределенное зондирование
Определенные волокна могут содержать серию решеток сенсоров (см. выше) для мониторинга температуры и распределения деформации по всему волокну. Это называется квази-распределенным зондированием. Существуют различные технические решения для адресации только к одной решетке (и таким образом точного определения положения вдоль волокна)
В одном способе, называющимся мультиплексирование с разделением по всей длине волны (WDM), или оптической рефлектометрии в частотной области спектра (OFDR), решетки имеют немного различающуюся брэгговскую длину волны. Длина волны перестраиваемого лазера в блоке интегрирования может быть настроена на длину волны, принадлежащую к определенному типу решетки, а длина волны максимального отражения указывает на влияние деформации или, например температуры. Кроме того широкополосные источники света источники света (например суперлюминесцентные источники) могут быть использованы совместно со сканирующим длину волны фотодетектором (например на основе волоконного резонатора Фабри-Перо) или на основе CCD спектрометра. В любом случае, максимальное количество решеток, как правило, не превышает 10-50, что ограничено диапазоном настройки пропускной способности источника света и необходимой разностью длин волн в решётках волокна.
-    Другой метод, называемый временным разделением каналов (TDM), использует идентичные слабоотражающие решетки, в которые посылаются короткие световые импульсы. Отражение от различных решеток регистрируют посредством времени их поступления. Временное разделение каналов (TDM) часто используют вместе с разделением по всей длине волны (WDM) для того, чтобы умножить число различных каналов в сотни или даже тысячи раз.
Другие подходы
Помимо выше описанных подходов, есть много альтернативных методов. Вот некоторые из них:
·       Волоконные брегговские решетки могут быть использованы в интерференционных оптических волокнах, где они используются только в качестве отражателей, и измеряют фазовый сдвиг, зависящий от расстояния между ними.
·       Существуют лазерные брэгговские сенсоры, где датчик решетки располагается в последнем зеркале волоконно – оптического резонатора лазера, на основе волокна допированного эрбием, которое воспринимает свет накачки на длине волны 980 нм через волокно. Брэгговская длина волны, которая зависит, например, от температуры или механического напряжения, определяет длину волны генерации. Этот подход, который имеет много вариантов дальнейшего развития, обещает принести высокие результаты из-за узкой полосы спектральной области, которая характерная для волоконного лазера, и высокой чувствительности.
·       В некоторых случаях, пары брэгговских решеток используются в качестве волокна для интерферометров Фабри-Перо, которые могут реагировать особо чувствительно на внешние воздействия. Интерферометр Фабри-Перо можно изготовить так же другим способом, например, используя переменный воздушный зазор в волокне.
·       Длиннопериодные решетки особенно интересны для зондирования нескольких параметров одновременно (например, температуры и напряжения) или иначе, для альтернативного определения деформации при очень низкой чувствительности к температурным изменениям.
Области применения
         Даже по прошествии нескольких лет развития, волоконно-оптические датчики до сих пор не пользуются большим коммерческим успехом, так как трудно заменить применяемые сейчас технологии, даже если они имеют определенные ограничения. Хотя в некоторых областях применения, волоконно-оптические датчики получают все большее признание, как технология с большим потенциалом интересных возможностей. Это, например, работа в жестких условиях, таких как зондирование в устройствах с высоким напряжением, или в СВЧ печах. Сенсоры на основе брэгговских решеток могут также быть использованы, например, для мониторинга условий, внутри крыльев самолетов, в ветровых турбинах, мостах, больших плотинах, нефтяных скважинах, и трубопроводах. Здания с встроенными волоконно-оптическими датчиками иногда называют «умными конструкциями», датчики в них осуществляют контроль деформации внутри различных частей  конструкции, и получают данные об этих изменениях, например износе, вибрации и.т.д. Умные конструкции являются основной движущей силой для развития волоконно-оптических датчиков.
 
По материалам интернет-энциклопедии www.rp-photonics.com

 
Кафедра Лазерной техники БГТУ 'Военмех'

Онлайн-конвертер

             
  разработка сайта NINSIS   190005, Санкт-Петербург, ул. 1-я Красноармейская, д. 1
тел/факс: +7 (812) 316-49-09
www.laser-portal.ru