главная   оптика   волоконная оптика   спектроскопия   лазеры   лазерные системы
 
     
 
Оптика
Волоконная оптика
Спектроскопия /
  История спектроскопии
  Спектральные диапазоны электромагнитного излучения
  Колебательная спектроскопия
  Спектроскопические приборы и методики
  Спектрометры
  Спектроскопические приборы: компоненты
  Производство и продажа спектроскопической техники в России
  Колориметры
  Многоспектральные и гиперспектральные изображения
  Фурье-спектроскопия
  Лазерная спектроскопия
  Области применения спектроскопии
Лазеры
Лазерные системы
Телекоммуникации и связь
 
Выставки и конференции
Новости науки и лазерной техники
 
О проекте
Ссылки

 

Фурье – спектрометр

Фурье-спектрометр - это интерферометр Майкельсона, который освещается исследуемым излучением, одно из зеркал перемещается с постоянной скоростью, а получившаяся на выходе кривая зависимости отсчета фотоприемного устройства от разности хода лучей в плечах интерферометра подвергается Фурье-анализу и тем самым преобразуется в распределение интенсивности по частотам (длинам волн). В некоторых случаях такая сложная методика оказывается более эффективной, чем прямой анализ спектра.

Фурье-спектроскопия является эффективным методом изучения колебательных спектров веществ.

Оптическая схема:
  1 -  Источник света.
 2 -  Фотоприемник.
 3 -  Зеркала.
 С.Д. - светоделитель.
 К - компенсатор.
У - устройство изменения разности хода.
Л - линзы (не обязательны).
 
 
Области применения:
·   Проведение исследований в ИК области,
·   Фурье-спектроскопия обеспечила существенное продвижение в исследовании колебательно-вращательных спектров молекулярных газов,
·   Газовый анализ, в первую очередь анализ состава атмосферы, как Земли, так и других планет.
Принцип действия.
Пусть разность хода между двумя интерферирующими пучками изменяется по закону Δ = 2vt. При монохроматическом освещении интерферометра интенсивность света, попадающего в приемник 2, изменяется синусоидально: сигнал приемника промодулирован с частотой W = 2kv = 2wv/c. Частота модуляции W зависит от оптической частоты w монохроматического излучения. Измеряя W, можно найти w, т.е. получить информацию о спектре источника. Для получения необходимого спектрального распределения интенсивности излучения по длинам волн (частотам) используют преобразование Фурье. Чем, собственно, и обуславливается название данного метода анализа.
Таким образом, процесс получения спектра методом Фурье-спектрометра сводится к следующим этапам:
- измерение F(Δ) путем регистрации сигнала как функции изменения оптической разности хода;
- экспериментальное определение значения F(0), т.е. регистрация сигнала в точке нулевой разности хода (разность хода в интерферометре будет равна нулю, если оптические длины пути лучей /светоделитель/зеркало/ обоих плеч будут равны). Этой точке соответствует абсолютный максимум отсчетов F(Δ);
- вычисление обратного преобразования Фурье - выражения F(Δ)-0.5 F(0).
Разрешающая способность Фурье-спектрометра.
Разрешающая способность, полученная в спектре, зарегистрированном на Фурье-спектрометре, определяется разностью хода Δ. Оказывается, однако, что разность хода можно делать сколь угодно большой только при достаточно малом входном отверстии. При конечном размере входной диафрагмы после отражения от коллиматора возникают пучки, непараллельные строго оптической оси прибора. Из-за разного наклона разность хода для таких пучков оказывается немного различной, что приводит к уширению аппаратной функции прибора. Чтобы ослабить этот эффект, приходится уменьшать входную диафрагму, однако уменьшение диафрагмы приводит к уменьшению сигнала и, следовательно, к ухудшению отношения сигнал / шум в спектре. На практике часто именно минимально возможная диафрагма и определяет спектральное разрешение.
Таким образом, реальное предельное разрешение фурье-спектрометров очень часто определяется энергетическими условиями: яркостью источника излучения, светосилой, чувствительностью приемника излучения и т.п. В современных приборах высокого класса, снабженных стандартными источниками излучения для измерения спектров поглощения, предельное разрешение составляет около 0,002 см-1.
Преимущества фурье-спектрометров:
1.Выигрыш Жакино. Есть возможность использовать большие телесные углы у источника и приемника. Таким образом через прибор проходит больше светового потока, следовательно происходит более полное использование анализируемого излучения.
2.Выигрыш фелжетта. В каждый момент времени регистрируется весь спектр, поэтому в Фурье-спектрометрах более высокое соотношение сигнал/шум, чем в дифракционных или призменных приборах.
3.Отсутствие ограничений в спектральном разрешении за счет размеров оптических элементов. Трудно ожидать, что размеры дифракционных решеток или тем более призм будут больше 50 см. Таким образом, естественным пределом разрешения приборов, использующих пространственную дисперсию, является величина 0,02 см-1. В то же время уже сейчас налажен серийный промышленный выпуск фурье-спектрометров с разрешением до 0,002 см-1.
4.Поскольку фурье-спектрометры не требуют очень узких входных и выходных щелей, требования к созданию оптических схем без аберраций при их конструкции сильно снижаются. По этой причине становится возможным создание оптических схем с большим отношением диаметра объектива к его фокусу (относительным отверстием), обычно 1 : 3, что делает такие приборы более компактными по сравнению со щелевыми.
Источники информации:
1.             http://lab127.karelia.ru/%7Eekostq/PUBLIC/fs/index_2.html,
2.             http://www.pereplet.ru/obrazovanie/stsoros/1156.html
3.             www.spectrometr.ru
 
 
Кафедра Лазерной техники БГТУ 'Военмех'

Онлайн-конвертер

 
         
 
  разработка сайта NINSIS   190005, Санкт-Петербург, ул. 1-я Красноармейская, д. 1
тел/факс: +7 (812) 316-49-09
www.laser-portal.ru